Autoexpertion.ru

Регулятор оборотов вентилятора радиатора

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Аналоговый регулятор оборотов вентилятора с термоконтролем

Как известно, сейчас вместо больших и тяжелых радиаторов используются системы активного охлаждения с вентиляторами. В эпоху микропроцессоров и микроконтроллеров вентиляторы управляются, главным образом, с помощью ШИМ (англ. PWM — Pulse-Width Modulation), то есть регулируется ширина импульса, подаваемого на вентилятор. В некоторых случаях не стоит управлять вентилятором в импульсном режиме из-за повышенного риска помех, которые могут возникнуть в других частях схемы. Тогда нам и понадобится такой аналоговый контроллер оборотов.

Эта схема была разработана для активного охлаждения усилителя большой мощности и позволяет регулировать вращение сразу 4-х вентиляторов. Датчиком температуры здесь является транзистор BD139, так как точность не важна, а применение транзистора этого типа позволяет снизить стоимость всей системы термоконтроля.

Кроме того, корпус этого транзистора легко прикручивается к радиатору, обеспечивая хороший тепловой контакт. Регулировка оборотов заключается в плавной смене выходного напряжения, поэтому не создает никаких электропомех, благодаря чему идеально подходит даже для малошумящих усилителей мощности. При тихом прослушивании УМЗЧ, где мощность потерь маленькая, а радиатор холодный — вентиляторов не слышно совсем.

Принципиальная схема регулятора

Основа — двойной операционный усилитель U1 (LM358). Выбор этого операционного усилителя продиктован не только его низкой ценой и доступностью, но, прежде всего, возможностью работы при выходных напряжениях, близких к нижней шине питания, то есть около потенциала массы.

Первая половина операционного усилителя (U1A) работает в конфигурации дифференциального усилителя с коэффициентом усиления 1. Усиление установлено с помощью резисторов R4-R7 (100k) и в случае необходимости их можно изменить путем изменения соотношения R7/R4 при сохранении такого же отношения R6/R5.

Датчиком температуры является транзистор T1 (BD139), а точнее его переход база-коллектор, подключенный в направлении нужной проводимости. Резистор R1 (22k) ограничивает ток, который течёт через T1. Напряжение на базе транзистора T1 при комнатной температуре будет в пределах 600 мВ и как в типовом разъеме PN будет изменяться с увеличением температуры на величину около 2.3 мВ/К.

Конденсатор C1 (100nF) фильтрует напряжение, которое затем поступает на резистор R4, то есть вход дифференциального усилителя U1A. Делитель построен на R2 (22k), P1 (5к) и R3 (120R) и он позволяет регулировать напряжение, которое подается на резистор R5 — неинвертированный вход усилителя U1A. Конденсатор C2 (100nF) фильтрует напряжение. В простейшем случае с помощью потенциометра P1 необходимо установить напряжение на С2, равное напряжению на C1 при комнатной температуре. Это приведет к тому, что на выходе усилителя U1A (pin 1) напряжение равно 0 (при комнатной температуре) и будет расти примерно на 2.3 мВ/K с увеличением температуры.

Вторая половина микросхемы (U1B) — усилитель с Ку 61, за значение которого отвечают элементы R9 (120k) и R8 (2k). Усиление задаётся соотношением этих резисторов, увеличенным на 1.

Исполнительный элемент — транзистор Дарлингтона T2 (TIP122), работающий в качестве буфера напряжения с большим максимальным выходным током. Резистор R10 (330R) ограничивает ток базы транзистора.

Напряжение с выхода U1A повышается более чем в 60 раз, после чего попадает на транзистор T2. Ток, протекающий через транзистор поступает через диоды D1-D4 (1N4007) на разъемы GP2-GP5, к которым подключают вентиляторы. Конденсаторы C5-C8 (100uF) фильтруют питание вентиляторов, а, кроме того, устраняют помехи, которые генерируют вентиляторы во время работы.

О блоке питания термоконтроллера. Система питается напряжением 15 В с током, соответствующим номиналам моторов. Напряжение питания подается на разъем GP1, а конденсаторы C3 (100nF) и C4 (100uF) являются его фильтрами.

Сборка схемы

Монтаж системы управления моторами не сложен, пайку следует начать с установки одной перемычки. Порядок подключения к плате остальных элементов любой, но удобно начать с резисторов и светодиодов, а в конечном итоге электролитическими конденсаторами и разъемами. Способ монтажа транзистора T2 и термодатчика T1 очень важен.

Следует иметь в виду, что транзистор Т2 работает линейно, поэтому выделяется большая мощность потерь, которая непосредственно переводится в тепло. Плата спроектирована так, чтобы можно было ее прикрутить к радиатору. Транзисторы T1 и T2 необходимо смонтировать на длинных выводах и их отогнуть, чтобы можно было установить на радиатор. Не забудьте прокладки, чтоб изолировать их электрически от радиатора.

Запуск и настройка

Схема, собранная из исправных компонентов, должна заработать сразу. Нужно только помнить о настройке порога с помощью потенциометра P1 так, чтобы при комнатной температуре вентиляторы крутились медленно. Напряжение на вентиляторе при этом режиме составляет около 4 В и достигает 12 В для температуры 80 градусов, то есть при росте примерно на 60 градусов.

Читать еще:  Потек радиатор печки ваз 2109

Зная необходимый диапазон изменения выходного напряжения и соответствующий ему диапазон изменения температуры можно вычислить коэффициент усиления ОУ U1B. Приведет это к изменению диапазона выходного напряжения, выраженное в милливольтах, а значит к изменению температуры от постоянного значения 2.3 mV/K. Тогда нужно будет с помощью потенциометра P1 всего лишь настроить такую точку работы, чтобы при комнатной температуре выходное напряжение было равно требуемому при расчете нижней границы.

Простейший регулятор для вентилятора постоянного тока

Вентиляторы могут использоваться для охлаждения схем, но постоянное вращение при номинальном напряжении приводит к механическом износу, прежде всего, подшипников. Включая вентилятор лишь по мере необходимости, и на скорости, соразмерной температуре, можно существенно продлить срок его жизни, так же, как и срок жизни охлаждаемой им аппаратуры.

Простейшая схема управления лишь включает и выключает вентилятор, но расплатой за простоту являются коммутационные помехи по питанию и высокие механические нагрузки на вентилятор. Пропорциональные контроллеры, безусловно, более элегантны. Они включаются при переходе температуры через определенный порог, увеличивают скорость вращения по мере роста температуры, плавно снижают скорость, когда схема начинает остывать, и, наконец, останавливаются совсем.

Однако, большинство пропорциональных регуляторов скорости вращения вентиляторов неоправданно сложны, поскольку охлаждение схем – задача далеко не из области точных наук. Предлагаемая на Рисунке 1 схема ничуть не менее эффективна, чем навороченные регуляторы, и много раз с успехом использовалась. Для схемы необходимы только термисторный датчик температуры, MOSFET транзистор, резистор и конденсатор для блюстителей схемотехнической нравственности. Предполагается, что термистор имеет отрицательный температурный коэффициент. Если вы располагаете термистором с положительным коэффициентом, поменяйте его местами с резистором R1.

Простейший пропорциональный регулятор для вентилятора постоянного тока можно сделать на термисторе и MOSFET транзисторе.

При комнатной температуре напряжение на затворе транзистора ниже типового порогового уровня Vgs(th), ток стока отсутствует, и вентилятор выключен. По мере роста температуры, сопротивление термистора падает, напряжение Vgs(th) растет, и транзистор начинает открываться. При достаточно высокой температуре транзистор входит в насыщение, и вентилятор начинает вращаться с максимальной скоростью. Практически получается, что интервал температур, в котором вентилятор из выключенного состояния достигает максимальной скорости, равен приблизительно 5 °C.

Пороговая температура, при которой начинается вращение вентилятора, устанавливается резистором R1. Для примера, пороговое напряжение затвора MOSFET транзистора NTD4959NH фирмы ON Semiconductor равно 2.0 ±0.5 В. Сопротивление RТЕРМ термистора ERTJ1VR103H производства Panasonic при температуре 25 °C имеет типовое значение 10 кОм. Чтобы установить порог 40 °C при напряжении питания вентилятора 12 В, сопротивление резистора должно быть:

Взяв типовое значение Vgs(th) = 2 В и сопротивление термистора при 40 °C RТЕРМ = 5.067 кОм (из справочных данных), находим ближайшее значение в ряду 1% резисторов R1 = 1.00 кОм.

Вследствие технологического разброса пороговых напряжений Vgs(th), температура включения также будет иметь разброс от экземпляра к экземпляру. При небольшом объеме производства проблему можно решить, заменив R1 подстроечным резистором. Но это увеличит цену изделия, поэтому, возможно, вам придется просто смириться с этим фактом.

По счастью, N-канальные MOSFET транзисторы имеют отрицательный температурный коэффициент напряжения порога, что, отчасти, компенсирует последствия разброса Vgs(th). Тем не менее, необходимо убедиться, что разброс температур включения будет приемлем для вашей системы.

Двигаясь в обратном направлении, от крайнего верхнего к крайнему нижнему значению указанного в справочных данных порогового напряжения Vgs(th), рассчитаем диапазон пороговых температур для наихудшего случая:

Vgs(th)мин. = 1.5 В и R1 = 1.00 кОм

Таким образом, вентилятор начнет вращаться при

RТЕРМ = 1.00 кОм × (12 В – 1.5 В)/1.5 В = 7.00 кОм,

что, согласно справочным данным, произойдет при температуре 33 °C. Аналогично, при самом большом пороговом напряжении, вращение вентилятора начнется при сопротивлении термистора 3.80 кОм и температуре 46 °C. Поскольку пороговое напряжение большинства MOSFET транзисторов будет располагаться вблизи середины указанной в справочнике зоны разброса, мы вправе ожидать, что температура включения вентилятора в крупных партиях изделий будет находиться в диапазоне 40 ±3 °C.

Теперь, несколько аспектов, на которые следует обратить внимание. Прежде всего, схема применима только к небольшим вентиляторам постоянного тока. Для больших вентиляторов, или массивов вентиляторов, схема будет неэффективной, а с вентиляторами переменного тока вовсе неработоспособной. Далее, необходимо посмотреть в справочных материалах на вентилятор, способен ли он работать в режиме периодического включения. Как правило, большинство вентиляторов на это рассчитаны. Но иногда требуется, чтобы скорость не падала ниже определенного минимального значения. В таком случае, поставьте резистор параллельно MOSFET транзистору.

И, наконец, нельзя забывать о том, что при средней скорости вращения вентилятора, MOSFET транзистор работает в линейном режиме и может рассеивать значительную мощность. Поскольку такое происходит только при вращении вентилятора, самым простым решением будет размещение транзистора на пути воздушного потока.

Перевод: AlexAAN по заказу РадиоЛоцман

Регулятор оборотов вентилятора радиатора

Шум, издаваемый вентиляторами в современных компьютерах довольно сильный, и это является достаточно распространенной проблемой среди пользователей. Помочь в снижении шума, издаваемого компьютерными вентиляторами системного блока, может регулятор частоты вращения вентилятора или кулера. В продаже имеются различные регуляторы, имеющие разнообразные дополнительные функции и возможности (контроль температуры, автоматическую регулировку скорости и т.д.).

Схема регулятора оборотов вентилятора.

Схема достаточно простая, и содержит всего три электронных компонента: транзистор, резистор, и переменный резистор.

В схему специально введён постоянный резистор R2, назначение которого ограничить минимальные обороты вентилятора, для того, что бы даже при самых низких оборотах обеспечить его надёжный запуск. Иначе пользователь может поставить слишком низкое напряжение на вентиляторе, при котором он будет продолжать крутиться, но которого будет недостаточно для его запуска при включении.

  • В схеме применен довольно распространенный транзистор КТ815, его несложно приобрести на радио рынке, или даже выпаять из старой советской аппаратуры. Подойдет любой транзистор из серии КТ815, КТ817 или КТ819, с любой буквой в конце.
  • Переменный резистор, применяемый в схеме, может быть совершенно любым, подходящим по габаритам, главное, он должен иметь сопротивление 1кОм.
  • Постоянный резистор может быть любого типа с сопротивлением 1 или 1.2 кОм.

Дополнительно стоит отметить, что если у Вас возникнут трудности с приобретением переменного резистора необходимого сопротивления, то в схеме можно применить переменный резистор R1 сопротивлением от 470 Ом до 4,7 кОм, но при этом придётся изменить и сопротивление резистора R2, оно должно быть таким же, как и у R1.

Монтаж и подключение регулятора скорости.
Монтаж всей схемы осуществляется прямо на ножках переменного резистора, и проводится очень просто:

регулятор оборотов

в разрыв цепи +12В, как показано на рисунке.
Внимание! Если у вашего вентилятора имеется 4 вывода, и их расцветка: черный, желтый, зелёный и синий (у таких плюс питания подаётся по желтому проводу), то регулятор включается в разрыв желтого провода.

Готовый, собранный регулятор оборотов вентилятора устанавливается в любом удобном месте системного блока, например, спереди в заглушке, пятидюймового отсека, или сзади в заглушке плат расширения. Для этого сверлится отверстие, необходимого диаметра для применяемого Вами переменного резистора, далее он вставляется в него и затягивается специальной, идущей с ним в комплекте гайкой. На ось переменного резистора, можно надеть подходящую ручку, например от старой советской аппаратуры.

Стоит заметить, что если транзистор в Вашем регуляторе будет сильно нагреваться (например, при большой потребляемой мощности вентилятором кулера или если через него подключено сразу несколько вентиляторов), то его следует установить на небольшой радиатор. Радиатором может служить кусочек алюминиевой или медной пластины толщиной 2 – 3 мм, длиной 3 см и шириной 2 см. Но как показала практика, если к регулятору подключен обычный компьютерный вентилятор с потребляемым током 0.1 – 0.2 А, то в радиаторе нет необходимости, так как транзистор нагревается совсем незначительно.

Регулятор скорости вращения вентилятора: виды устройства и правила подключения

Вентилятор является одним из малозаметных, но чрезвычайно важных приборов, помогающих создавать благоприятные условия для работы, отдыха и просто приятного проведения времени.

Без него не смогут функционировать компьютеры, холодильники, кондиционеры и другая техника. Для максимально эффективной работы различных устройств используют регулятор скорости вращения вентилятора.

Из нашего материала вы узнаете о том, какие бывают регуляторы, особенностях их работы. Также мы расскажем, как своими руками собрать прибор и что для этого потребуется.

Виды и особенности устройства

Существует множество видов вентиляторов, они задействованы в работе систем климат-контроля, компьютеров, ноутбуков, холодильников, многой другой офисной и бытовой техники.

Чтобы контролировать скорость вращения его лопастей, часто применяется небольшой элемент – регулятор. Именно он позволяет продлить срок использования оборудования, а также, значительно снизить уровень шума в помещении.

Назначение прибора для управления скоростью

Когда кондиционер или вентилятор постоянно работает в режиме максимальной мощности, предусмотренной производителем, это неблагоприятно сказывается на сроке эксплуатации. Отдельные детали просто не могут выдержать такой ритм и быстро ломаются.

Поэтому часто можно встретить рекомендации делать запас по мощности при выборе различного рода оборудования, чтобы оно не работало на пределе.

Также часто в холодильных установках, компьютерах и другой технике определенные элементы перегреваются в процессе работы. Чтобы они не расплавились, производитель предусмотрел их охлаждение за счет работающих вентиляторов.

Но не все выполняемые задачи требуют максимальной скорости движения вентилятора/кулера. При офисной работе компьютера или поддержании постоянной температуры в холодильной установке нагрузка значительно меньше, чем при выполнении сложных математических вычислений или заморозке соответственно. А вентилятор, не имеющий регулятора, будет вращаться с одинаковой скоростью.

Скопление большого количества мощной техники, функционирующей в одном помещении, способно создавать шум на уровне 50 децибел и более за счет одновременно работающих вентиляторов на максимальных оборотах.

В такой атмосфере человеку сложно работать, он быстро утомляется. Поэтому целесообразно использовать приборы, способные снизить уровень шума вентилятора не только в производственных цехах, но и в офисных помещениях.

Помимо перегрева отдельных деталей и снижения уровня шума регуляторы позволяют рационально использовать технику, уменьшая и увеличивая при необходимости скорость вращения лопастей оборудования. Например, в системах климат-контроля, используемого во многих общественных местах и производственных помещениях.

Одной из важных деталей умных приборов потолочного вентилирования помещения являются регуляторы оборотов. Их работу обеспечивают показатели датчиков температуры, влажности, давления. Вентиляторы, используемые для перемешивания воздуха в помещении спортзала, производственного цеха или офисного кабинета, помогают экономить средства, затрачиваемые на отопление.

Это происходит за счет равномерного распределения нагретого воздуха, циркулирующего в помещении. Вентиляторы нагнетают верхние теплые слои вниз, перемешивая их с более холодными нижними. Ведь для комфорта человека важно, чтобы в нижней части комнаты, а не под потолком, было тепло. Регуляторы в таких системах следят за скоростью вращения, замедляя и ускоряя скорость движения лопастей.

Основные разновидности регуляторов

Контроллеры оборотов вентилятора востребованы. Рынок изобилует различными предложениями и рядовому пользователю, не знакомому с особенностями устройств, легко потеряться среди различных предложений.

Регуляторы отличаются по принципу действия.

Выделяют такие типы устройств:

  • тиристорные;
  • симисторные;
  • частотные;
  • трансформаторные.

Первый тип приборов применяется для корректировки оборотов однофазных приборов, имеющих защиту от перегрева. Изменение скорости происходит за счет влияния регулятора на мощность подаваемого напряжения.

Второй тип является разновидностью тиристорных устройств. Регулятор может одновременно управлять приборами постоянного и переменного тока. Характеризуется возможностью плавного понижения/повышения скорости оборотов при напряжении вентилятора до 220 В.

Третий тип устройств изменяет частоту подаваемого напряжения. Основная задача – получить питающее напряжение в пределах 0-480 В. Контроллеры применяются для трехфазного оборудования в системах вентилирования помещений и в мощных кондиционерах.

Трансформаторные контроллеры могут работать с одно- и трехфазным током. Они изменяют выходное напряжение, регулируя работу вентилятора и защищая прибор от перегрева. Могут использоваться в автоматическом режиме для регулировки оборотов нескольких мощных вентиляторов, учитывая показатели датчиков давления, температуры, влажности и прочие.

Чаще всего в быту применяются симисторные регуляторы. Их относят к типу XGE. Можно обнаружить много предложений от разных производителей – они компактные и надежные. Причем диапазон цен также будет весьма широк.

Трансформаторные же устройства довольно дорогие – в зависимости от дополнительных возможностей они могут стоить 700 долларов и более. Они относятся к регуляторам типа RGE и способны регулировать обороты очень мощных вентиляторов, используемых в промышленности.

Особенности использования приборов

Регуляторы оборотов вентилятора используются в промышленном оборудовании, в офисных помещениях, спортзалах, кафе, других местах общественного пользования. Также часто можно встретить такие контролеры в системах климат-контроля для домашнего использования.

Системы вентилирования, используемые в фитнес-центрах, а также, кондиционеры, включаемые для обогрева в офисных помещениях, чаще всего содержат регулятор скорости вращения. Причем это не простой дешевый вариант, а дорогостоящее трансформаторное устройство, способное регулировать скорость вращения мощных приборов.

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]